【摘要】 自从铁电现象被发现以来,铁电材料的极化电场滞后现象已经得到了广泛的研究。
自从铁电现象被发现以来,铁电材料的极化电场滞后现象已经得到了广泛的研究[1–5]。这是由于铁电体的固有特性,如矫顽场、自发极化和残余极化,可以直接从极化电场的磁滞回线中提取。在实验上,当周期性电场或应力施加在铁电体上时,可以测量磁滞回线[6,7]。此外,许多因素,如温度、晶界或相界、化学元素掺杂以及各向异性等,都会影响铁电体的迟滞行为,也已被广泛研究[8–12]。理论上,在著名的Preisach模型的基础上改进了磁滞回线模型,并在Preisach模型的基础上研究了微观结构和外加应变或应力对铁电体迟滞行为的影响,包括晶粒尺寸对BaTiO3多晶滞后性能的影响,位错壁对铁电单晶极化开关的影响,应变对铁电多晶畴开关的影响,铁电存储器临界厚度问题中的应变效应等[13–18]。然而许多实验和理论结果表明,铁电体的滞回性能不仅取决于材料的微观结构(如晶粒尺寸、厚度、时效和晶界/相界),而且还强烈地取决于测量条件(如频率、温度和应力等)[19–21]. 因此,在不同条件下测量或预测的滞回曲线不可避免地呈现出不同的模式。实验获得的各种模式仍然超出了使用依赖时间的Landau-Ginzburg-Devonshire(TDLGD)唯象理论数值模拟的预测。[17,18,22]
参考文献
[1]L.X. Wang, R. Melnik, F.Z. Lv, Stress induced polarization switching and coupled hysteretic dynamics in ferroelectric materials, Front. Mech. Eng. 6 (3) (2011) 2872–2891.
[2] J.W. Hong, D.N. Fang, Size-dependent ferroelectric behaviors of BaTiO3 nanowires, Appl. Phys. Lett. 92 (1) (2008) 012906.
[3] C.M. Krowne, S.W. Kirchoefer, W. Chang, J.M. Pond, L.M.B. Alldredge, Examination of the possibility of negative capacitance using ferroelectric materials in solid state electronic devices, Nano Lett. 11 (3) (2011) 9889–9892.
[4] Dragan Damjanovic, Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics, Rep. Prog. Phys. 61 (9) (1998) 1267–1324.
[5] H.H. Wu, J.M. Zhu, T.Y. Zhang, Size-dependent ultrahigh electrocaloric effect near pseudo-first-order phase transition temperature in barium titanate nanoparticles, RSC Adv. 5 (47) (2015) 37476–37484.
[6] M. Dawber, N. Stucki, C. Lichtensteiger, S. Gariglio, P. Ghosez, J.M. Triscone, Tailoring the properties of artificially layered ferroelectric superlattices, Adv. Mater. 19 (23) (2007) 4153–4159.
[7] A.M. Bratkovsky, A.P. Levanyuk, Depolarizing field and “real” hysteresis loops in nanometer-scale ferroelectric films, Appl. Phys. Lett. 89 (25) (2006) 253108.
[8] G. Du, R. Liang, L. Wang, K. Li, W. Zhang, G. Wang, X. Dong, Linear temperature scaling of ferroelectric hysteresis in Mn-doped Pb(Mn1/3Sb2/3)O3-Pb(Zr,Ti)O3 ceramic with internal bias field, Appl. Phys. Lett. 102 (14) (2013) 142903.
[9] C.A. Randall, N. Kim, J.P. Kucera, W.W. Cao, T.R. Shrout, Intrinsic and extrinsic size effects in fine-grained morphotropic-phase-boundary lead zirconate titanate ceramics, J. Am. Ceram. Soc. 81 (3) (1998) 677–688.
[10] Q. Zhang, Y. Zhang, T. Yang, S. Jiang, J. Wang, S. Chen, G. Li, X. Yao, Effect of compositional variations on phase transition and electric field-induced strain of (Pb,Ba)(Nb,Zr,Sn,Ti)O3 ceramics, Ceram. Int. 39 (5) (2013) 5403–5406.
[11] M.I. Morozov, D. Damjanovic, Hardening-softening transition in Fe-doped Pb(Zr,Ti) O3 ceramics and evolution of the third harmonic of the polarization response, J. Appl. Phys. 104 (3) (2008) 034107.
[12] K. Takemura, M. Ozgul, V. Bornand, S. Trolier-McKinstry, C.A. Randall, Fatigue anisotropy in single crystal Pb(Zn1/3Nb2/3)O3–PbTiO3, J. Appl. Phys. 88 (12) (2000) 7272–7277.
[13] L. Curecheriu, S.B. Balmus, M.T. Buscaglia, V. Buscaglia, A. Ianculescu, L. Mitoseriu, Grain size-dependent properties of dense nanocrystalline barium titanate ceramics, J. Am. Ceram. Soc. 95 (12) (2012) 3912–3921.
[14] N. Liu, Y. Su, G.J. Weng, A phase-field study on the hysteresis behaviors and domain patterns of nanocrystalline ferroelectric polycrystals, J. Appl. Phys. 113 (20) (2013) 204106.
[15] H.H. Wu, J. Wang, S.G. Cao, T.Y. Zhang, Effect of dislocation walls on the polarization switching of a ferroelectric single crystal, Appl. Phys. Lett. 102 (23) (2013) 232904.
[16] A.M. Bratkovsky, A.P. Levanyuk, Strain effect in the problem of critical thickness for ferroelectric memory, Philos. Mag. 90 (1–4) (2010) 113–124.
[17] Y. Tong, M. Liu, H.M. Chen, G.P. Li, H. Fang, J. Wang, Z. Ma, The effect of strain on the domain switching of ferroelectric polycrystals, J. Appl. Phys. 117 (7) (2015) 074102.
[18] B.L. Ball, R.C. Smith, S.J. Kim, S. Seelecke, A stress-dependent hysteresis model for ferroelectric materials, J. Int. Mater. Syst. Struct. 18 (1) (2007) 69–88.
[19] M.H. Frey, Z. Xu, P. Han, D.A. Payne, The role of interfaces on an apparent grain size effect on the dielectric properties for ferroelectric barium titanate ceramics, Ferroelectrics 206 (1) (1998) 337–353.
[20] L. Jin, F. Li, S.J. Zhang, Decoding the fingerprint of ferroelectric loops: comprehension of the material properties and structures, J. Am. Ceram. Soc. 97 (1) (2014) 1–27.
[21] R. Yimnirun, R. Wongmaneerung, S. Wongsaenmai, A. Ngamjarurojana, S. Ananta, Y. Laosiritaworn, Temperature scaling of dynamic hysteresis in soft lead zirconate titanate bulk ceramic, Appl. Phys. Lett. 90 (11) (2007) 112906.
科学指南针是杭州研趣信息技术有限公司推出的主品牌,专注科研服务,以分析测试为核心。团队核心成员全部来自美国密歇根大学,卡耐基梅隆大学,瑞典皇家工学院,浙江大学,上海交通大学,同济大学等海内外名校,为您对接测试的项目经理100%具有硕士以上学历。我们整合高校/社会闲置仪器设备资源,甄选优质仪器,为广大科研工作者提供方便、快速、更具性价比的分析测试服务。
免责声明:部分文章整合自网络,因内容庞杂无法联系到全部作者,如有侵权,请联系删除,我们会在第一时间予以答复,万分感谢。