【摘要】 温和条件下的固氮 (N2)反应是实现绿色生产氨 (NH3) 的一种很有前景的方法。
01研究背景
温和条件下的固氮 (N2)反应是实现绿色生产氨 (NH3) 的一种很有前景的方法。电催化和光催化N2还原反应 (NRR)分别使用N2和H2O作为氮源和质子源,被认为是在温和条件下生产NH3的有效途径。然而,由于N2的惰性,目前NH3产率较低,距离商业化应用仍存在很大差距。此外,析氢反应(HER)较小的能垒使得其成为NRR反应中的强大竞争者,导致电催化和光催化NRR过程中的法拉第效率(FE)和量子效率(QE)较低。因此,研究者们开发了一系列先进的催化剂,包括贵金属、非贵金属、非金属材料和过渡金属基材料,来提升光或电驱动生产NH3的效率。其中,TiO2基催化剂因其价格低廉、资源丰富、稳定性好、独特的光学和电学性能而备受关注。特别是,TiO2对N2具有较强的结合和活化能力,能有效促进NRR过程。因此,在过去的几十年中,TiO2基催化剂在光催化和电催化 NRR的中得到了广泛的研究。
02工作介绍
复旦大学赵东元院士和李伟教授团队总结了TiO2基催化剂在光催化和电催化NRR方面的最新研究进展。文章介绍了电催化和光催化NRR的基础知识,包括反应机理、N2的吸附和活化以及竞争性HER反应。随后,作者从合成策略、物理和化学性质以及性能等方面对用于NRR的TiO2基催化剂设计的最新进展和瓶颈进行了分析和概括。该工作在SusMat上以题为“Recent advances in TiO2-based catalysts for N2 reduction reaction”在线发表(DOI: 10.1002/sus2.13)

图1. TiO2基材料在NRR反应中的研究进展概述图。
03作者介绍

04主要内容
1.电催化和光催化NRR的基本理解
1.1 反应机制
电化学NRR的反应机制主要分为解离机制和缔合机制。对于解离机制,N≡N三键首先在催化剂表面断裂。然后,质子和电子被添加到N原子,导致 NH3的形成。然而,由于N2的强三重N≡N键和高电离能 (15.58 eV),阻碍了大多数催化剂的NRR过程沿着解离机制进行。在缔合机制中,质子在N≡N三键断裂之前已添加到N2分子中,与N≡N三键的断裂无关。因此,与解离机制相比,结合机制需要的能量相对较小,更适用于温和条件下的NRR。光催化 NRR通常经历以下几个步骤:在光的照射下,价带电子跃迁至导带,在半导体的价带中形成空穴。同时,N2被吸附并在表面活化。来自水中的光激发电子和质子将N2还原为NH3。
1.2 催化N2固定过程和限制
NRR 是一个六电子转移过程,涉及多种中间体。目前,普遍认为NRR的整个反应过程如下:
N2+ 6H++6e- → 2NH3







您已经拒绝加入团体

